
User Management
User management is one of the core functions of a CMS—the engine needs to know
who is allowed to edit documents, and needs a way to manage those users.

In this chapter, we will discuss the following points:

•	 Overview of user management

•	 What "roles" are, and how they work

•	 Storage of user data in a database

•	 Creation of a login system

•	 Using the ReCaptcha tool

•	 Forgotten-password management

•	 Create a user-management system

We will cover the basics of role-management, but will not go in-depth into it, as none
of the features in the project CMS we are building will require it.

Types of users
As applications evolve from simple scripts to complex systems, developers tend to
add code and ideas as they occur and are needed.

In the beginning, when creating simple CMSs, this means that user access is conined
to administrator logins, as user logins are not usually necessary for simple systems
like news reporting, or image galleries.

So, the developer creates a table of administrators.

Later on, as the system evolves, it becomes necessary to create front-end users, so
that people can log in and contribute comments or content, or purchase items with a
user-based discount.

www.eBookTM.Com

User Management

[34]

Again, because the system is slowly evolving, the developer now adds a table of
front-end users.

But things then get complex—what if we want administrators to correspond with
commenters, or someone who uses the system as a normal user but is also an admin?

One solution to this is to have one table of users, and a lag which states whether the
user is a normal user or an admin.

But then, we have another problem—what if you want some users to be admins, but
you want them to have access only to certain parts of the backend area? For example,
let's say the user is in charge of uploading news stories—that user needs access to the
admin area, but should not have access to, say, the user management areas.

Roles
The solution is not to use lags, but to use "roles" (also called "groups").

A role is a group of permissions which you can assign to a user. I will use the words
"role" and "group" interchangeably in the book—they essentially mean the same
thing when speaking of user rights.

For example, you might have a role such as "page editor", which includes the
following permissions:

•	 Can create pages

•	 Can delete pages

•	 Can edit pages

You might have a user who is allowed to edit pages and also to edit online store
products, in which case you need to either have a single group which covers all those
permissions, or two groups ("page editor" and "online store editor"), and the user is a
member of both.

The latter case, multiple groups, is much easier to manage, and is in fact necessary;
as the number of possible combinations of permissions grows exponentially, more
roles are created.

Another important question is, where do these role names come from? Does an
administrator create them?

It's an interesting question, because the answer is both "yes" and "no".

If in order to create roles, you need to be a member of the "administrator" role, then
who creates the "administrator" role? What if the role is deleted?

www.eBookTM.Com

Chapter 2

[35]

So we have a case where a role should not be created by an administrator.

On the other hand, we might have an online store, and want to assign a 5% discount
to all users who are members of the role "favored customers". Who creates that role?
It makes sense that the administrator should be allowed to create as many custom
roles as is needed. And it is impossible for a sensible application to be created which
predicts all the roles that will be required by a user-deined system.

So, we have a case where a role should be created by an administrator.

In these cases, it is okay if the admin deletes the "favored customers" role, but not if
the "administrator" role is deleted.

How do we get around this?

One solution, which we'll use in this book, is to preix system-generated role names
with '_', and to disallow administrators from editing or creating role names that use
that scheme.

We will deine two starter roles:

•	 _administrators: This role gives a user permission to enter the admin
part of a system

•	 _superadministrators: This role is a special one, which gives a user
total access

We will not build a role management system in this book, because none of the
other chapters will require it. We are discussing it here because it is better to
prepare for a future need than to stumble across the need and have to rewrite
a lot of hardcoded behavior.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

User Management

[36]

Database tables
To record the users in the database, we need to create the user_accounts table,
and the groups table to record the roles (groups).

First, here is the user_accounts table. Enter it using phpMyAdmin, or the console:

CREATE TABLE `user_accounts` (

 `id` int(11) UNSIGNED NOT NULL AUTO_INCREMENT ,

 `email` text,

 `password` char(32) DEFAULT NULL,

 `active` tinyint DEFAULT '0',

 `groups` text,

 `activation_key` varchar(32) DEFAULT NULL,

 `extras` text,

 PRIMARY KEY (`id`)

) DEFAULT CHARSET=utf8;

Name Description

id This is the primary key of the table. It's used when a reference to the user
needs to be recorded.

email You can never tell how large an e-mail address should be, so this is recorded
as a text ield.

password This will always by 32 characters long, because it is recorded as an MD5
string.

active This should be a Boolean (true/false), but there is no Boolean ield in
MySQL. This ield says whether the user is active or disabled. If disabled,
then the user cannot log in.

groups This is a text ield, again, because we cannot tell how long it should be. This
will contain a JSON-encoded list of group names that the user belongs to.

activation_
key

If the user forgets his/her password, or is registering for the irst time,
then an activation key will be sent out to the user's e-mail address. This is a
random string which we generate using MD5.

extras When registering a user, it is frequently desired that a list of extra custom
ields such as name, address, phone number (and so on) also be recorded.
This ield will record all of those using JSON. If you prefer, you could call
this "usermeta", and adjust your copy of the code accordingly.

Note the usage of JSON for the groups ield (or "column", if you prefer that word).
Deciding whether to fully normalize a database, or whether to combine some values
for the sake of speed, is a decision that often needs to be made.

www.eBookTM.Com

Chapter 2

[37]

In this table, I've decided to combine the groups into one ield for the sake of speed,
as the alternative is to use three table (the user_accounts table, the groups table,
and a linking table), which would be slower than what we have here.

If in the future, it becomes necessary to separate this out into a fully normalized
database, a simple upgrade script can be used to do this.

For now, populate the table with one entry for yourself, so we can test a login.
Remember that the password needs to be MD5-encoded.

Note that MD5, SHA1, and other hashing functions are all vulnerable to collision-
testing. If a hacker was to somehow get a copy of your database, it would be possible
to eventually ind working passwords for each MD5 or SHA1 hash. Of course, for
this to happen, the hacker must irst break into your database, in which case you
have a bigger problem.

Whether you use SHA1, MD5, bcrypt, scrypt, or any of the other hashing functions
is a compromise between your need for security (bcrypt being more secure), or speed
(MD5 and SHA1 being fast).

Here's an example insert line:

insert into user_accounts

 (email,password,active,groups)

 values(

 'kae@verens.com',

 md5('kae@verens.com|my password'),

 1,

 '["_superadministrators"]'

)

;

Notice that the groups ield uses JSON.

If we used a comma-delimited text ield, then that would make it impossible to have
a group name with a comma in it. The same is true of other character delimiters.

Also, if we used integer primary key references (to the groups table) then it would
require a table join, which takes time.

By putting the actual name of the group in the ield instead of a reference to an
external table row, we are saving time and resources.

The password ield is also very important to take note of.

We encrypt the password in the database using MD5. This is so that no one knows
any user's password, even the database administrator.

www.eBookTM.Com

User Management

[38]

However, simply encrypting the password with MD5 is not enough. For example,
the MD5 of the word password is 5f4dcc3b5aa765d61d8327deb882cf99. This may
look secure, but when I run a search for that MD5 string in a search engine, I get
28,300 results!

This is because there are vast databases online with the MD5s of all the
common passwords.

So, we "salt" the MD5 by adding the user's e-mail address to it, which causes
the passwords to be encrypted differently for each user, even if they all use the
same password.

This gets around the problem of users using simple passwords that are easily
cracked by looking up the MD5. It will not stop a determined hacker who is willing
to devote vast resources to the effort, but as I said earlier, if someone has managed to
get at the database in the irst place, you probably have bigger problems.

Now, let's put this table to use by creating the login form and the login mechanism.

Admin area login page
In Chapter 1, CMS Core Design, we discussed a number of different systems used by
CMSs to allow administrators to log in. Some have the administrator log in using the
same form as a normal user would log in with, some have totally separate domains
dedicated to administration, and some even have dedicated desktop programs.

We will use a deined directory within the CMS structure, /ww.admin. This is
how CMSs such as Joomla! or WordPress manage administration. In Joomla!,
administrators log into /administrator, and in WordPress, administrators log
into /wp-admin.

How the administration pages will work is that whenever a page is loaded, it checks
irst to see if you are logged in as an admin, and if not, you are shown a login page.

So, create the directory ww.admin in your web root, and let's create a page called
index.php in that directory:

<?php

require 'admin_libs.php';

echo 'you are logged in!';

www.eBookTM.Com

Chapter 2

[39]

The ile /ww.admin/admin_libs.php will be included by every page in the admin
area. Create that now:

<?php

require $_SERVER['DOCUMENT_ROOT'].'/ww.incs/basics.php';

function is_admin(){

 if(!isset($_SESSION['userdata']))return false;

 return (

 isset(

 $_SESSION['userdata']['groups']['_administrators']

) ||

 isset(

 $_SESSION['userdata']['groups']['_superadministrators']

)

);

}

if(!is_admin()){

 require SCRIPTBASE.'ww.admin/login/login.php';

 exit;

}

So what happens here is that each time the admin_libs.php ile is loaded, it checks
irst that a userdata session variable has been created and that it contains either the
group _administrators or _superadministrators. Remember, _administrators
have access to the admin area, and _superadministrators have total access—there
is not much of a difference in this book's project, but the difference is important
enough that we should "future-proof" the system by using this difference now.

If the function is_admin() returns false, then the browser is sent a login page,
which we'll create next.

Create a directory /ww.admin/login, and create the ile login.php in it:

<html>

 <head>

 <title>Login</title>

 <link rel="stylesheet" type="text/css"

 href="/ww.admin/login/login.css" />

 </head>

 <body>

 <div id="header"></div>

 <div class="tabs">,

 Login

 Forgotten Password

www.eBookTM.Com

User Management

[40]

 <div id="tab1">

 <form method="post"

 action="/ww.incs/login.php?redirect=<?php

 echo $_SERVER['PHP_SELF'];

 ?>">

 <table>

 <tr><th>email</th><td>

 <input id="email" name="email" type="email" />

 </td></tr>

 <tr><th>password</th><td>

 <input type="password" name="password" />

 </td></tr>

 <tr><th colspan="2" align="right">

 <input name="action" type="submit"

 value="login" class="login" />

 </th></tr>

 </table>

 </form>

 </div>

 <div id="tab2">

 <form method="post"

 action="/ww.incs/forgotten-password.php?redirect=<?php

 echo $_SERVER['PHP_SELF'];

 ?>">

 <table>

 <tr><th>email</th><td>

 <input id="email" type="text" name="email" />

 </td></tr>

 <tr><th colspan="2" align="right">

 <input name="action" type="submit"

 value="resend my password" class="login" />

 </th></tr>

 </table>

 </form>

 </div>

 </div>

 </body>

</html>

A login.css ile is referenced in that source. The contents of it are not important
to what we're doing, so we won't bother repeating it here. The CSS and images
are available to download from Packt's website along with all source code from
this project.

www.eBookTM.Com

Chapter 2

[41]

There are two forms in there; the irst is for logging in, and the second is for
reminding the user of the password, if the password has been forgotten.

Notice that we ask for the e-mail address of the user, and not a username.

When people choose usernames, if there are a lot of users in the system, it is likely
that the username that the person wants in the irst place is already taken. For
example, I like to log in everywhere as "kae". Unfortunately, in very large systems,
that username can be already taken. This would be a bigger problem for people
named "James" or "John", and so on.

E-mails, though, are unique. You cannot have two people logged in who have the
same e-mail address.

Another reason is that e-mail addresses tend not to be forgotten. People generally
have only one or two e-mail addresses that they use. If it's not one, it's the other.

Yet another reason is that if you have forgotten your password, then a reminder
service can be used to send a "reset" URL to the registrant's e-mail account.

If you go a very long time without forgetting the password, then it is possible that by
the time you need the reminder, you will no longer have access to the e-mail account
you used to create the account–you may have changed company, or some other reason.

www.eBookTM.Com

User Management

[42]

But, if you're using your e-mail address as the account name, and realize you are
about to lose access to it, then the very act of logging in will remind you that you
need to change the user account details before you forget the password.

Another thing to note about the HTML is the target of the forms.

We have a single login point, /ww.incs/login.php, which can be used by both
administrators and normal users. The redirect parameter is used to tell the server
where the browser should be sent after the login is done.

We're not quite done yet with that ile. The screen is a little bit bland. We can use our
irst piece of jQuery to liven it up a bit using tabs.

Change the header by adding these highlighted lines:

 <title>Login</title>

 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/
jquery.min.js"></script>

 <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.0/
jquery-ui.min.js"></script>

 <link rel="stylesheet" type="text/css" href="http://ajax.
googleapis.com/ajax/libs/jqueryui/1.8.0/themes/south-street/jquery-ui.
css" />

 <script src="/ww.admin/login/login.js"></script>

 <link rel="stylesheet" type="text/css"

 href="/ww.admin/login/login.css" />

The irst three highlighted lines load up jQuery and jQuery UI from Google's
Content Delivery Network (CDN), and load up a jQuery UI stylesheet as well.

Some people don't like to use Google's CDN, so you may want to download the
jQuery and jQuery UI iles and link to them on your local server. I've never had a
problem using Google's CDN.

Linking to a CDN has some advantages, such as quicker access in cases where the
browser is far from the site (the CDN copy may be physically closer to the browser,
thus causing less network lag), less bandwidth usage for your own site, and less iles
to maintain on your own system.

When building a large application, there's a lot of "widget" functionality (tabs, auto
completes, sliders, drag/drop, and so on) which may be used in various places. The
jQuery UI project provides a lot of these, and is extremely simple to use.

www.eBookTM.Com

Chapter 2

[43]

The last line is a link to a local script, which we'll use to set up the tabs. Create the ile
/ww.admin/login/login.js:

$(function(){

 $('.tabs').tabs();

});

This small piece of code tells jQuery: "When the page is inished loading, run the
function .tabs() against all elements with the class tabs".

Wrapping a function inside $() is equivalent to running $(document).
ready() with the function as a parameter.

After the browser runs that tiny piece of code, the Login page now looks like this:

www.eBookTM.Com

User Management

[44]

And if the Forgotten Password tab is clicked, then it appears as follows:

For a full explanation of how tabs work, see the jQuery UI website—http://

jqueryui.com/demos/tabs/.

There is one more thing that is needed before the login form is complete.

In order to stop malicious robot programs from trying to log in using brute force
to guess the password, and also to stop similar robots from sending out reminder
e-mails to you and resetting your password, we will use a "captcha" to verify that
whoever is illing in the form is human.

A captcha is a picture of some text. It is obscured slightly by deforming the image
or adding static, and so on, so that it is not easy for a robot to decipher it using an
optical character recognition program.

Generating captchas is not dificult—there are many scripts online that do it for you.
However, if you use a script that you are not constantly tweaking, then it is possible
that someone will eventually ind a way to decipher the captcha automatically.

A good solution is to use the reCAPTCHA library (http://recaptcha.net/). This
is a well-known captcha program which generates images based on photographs of
old books. It also provides alternative audio from old radio shows in case the user
cannot see clearly.

www.eBookTM.Com

Chapter 2

[45]

Download the latest recaptcha-php script from http://code.google.com/p/
recaptcha/—at the time of writing, this is recaptcha-php-1.10.zip—and unzip it
in /ww.incs so you have a directory called /ww.incs/recaptcha-php-1.10. If you
found a newer one, replace -1.10 with whatever is appropriate.

You will also need to get an API key. This is a string of characters which identiies
you to the reCAPTCHA engine when it's used. Do this by creating a user account at
http://recaptcha.net/. If you plan on using your CMS on more than one domain,
then make sure to tick the Enable this key on all domains check-box while registering.

After registering, you will be given a "public key" and a "private key".

We will record the keys in a ile named /ww.incs/recaptcha.php:

<?php

require SCRIPTBASE

 .'ww.incs/recaptcha-php-1.10/recaptchalib.php';

define('RECAPTCHA_PRIVATE',''); // place private key here

define('RECAPTCHA_PUBLIC',''); // place public key here

Replace the second parameters of these lines with your keys We've placed this ile in
the /ww.incs/ directory so that it can be accessed by any code that needs it, whether
it's in the admin section or the public section. Also, as the ile is named captcha.
php and doesn't mention the version number of the library, installing a new copy of
the reCAPTCHA library involves simply unzipping it in the /ww.incs directory and
changing the given require line to match it.

At the top of the /ww.admin/login/login.php page, add these highlighted lines:

<?php

 require SCRIPTBASE.'ww.incs/recaptcha.php';

 $captcha=recaptcha_get_html(RECAPTCHA_PUBLIC);

?>

<html>

 <head>

And in the login form's table, add this just before the submit button's row:

<tr id="captcha">

 <th>captcha</th>

 <td><?php echo $captcha; ?></td>

</tr>

www.eBookTM.Com

User Management

[46]

When the given code is rendered, the captcha writes some HTML which imports an
external JavaScript ile, and if no JavaScript is available to the browser, then it also
shows an iframe with alternative HTML in it.

Because we have two forms on the page, we should logically want two captchas as
well. Unfortunately, you cannot have two captchas on the same page, as each image
will be different (they're never cached), and each new captcha invalidates the old
one. So, if you had two, only one of them would work.

So, what we will do is add a little bit of jQuery that moves the captcha whenever a
tab is clicked.

To do this, rewrite the /ww.admin/login/login.js ile completely:

$(function(){

 // remove the captcha's script element

 $('#captcha script').remove();

 // set up tabs

 $('.tabs').tabs({

 show:function(event,ui){

 // if the captcha is already here, return

 if($('#captcha',ui.panel).length)return;

 // move the captcha into this panel

www.eBookTM.Com

Chapter 2

[47]

 $('table tr:last',ui.panel).before($('#captcha'));

 }

 });

});

When the page is loaded, the given script runs.

First, it removes the captcha's <script> element. Otherwise, when it is moved, the
script will run again, breaking the captcha.

Then, we add some code which tells jQuery UI that whenever a tab panel is shown,
we want to check it for the captcha row. If the row doesn't exist, then move it from
where it is, to the present panel.

The highlighted line handles the moving.

Okay! We are inally inished with the login forms. Now, let's handle the actual login.

Logging in
It is tempting to have a separate login script for the admin and normal users, but this
can cause problems in the future if you ever change how logins work.

In the form that we created, we set the action to /ww.incs/login.php, with an
added parameter named "redirect".

What's involved with a login is as follows:

•	 Verify that the submitted captcha is correct (we don't want robots logging
in!)

•	 Verify there is an entry in user_accounts where the submitted e-mail
address and password are matched

•	 If all is well, set a session variable named userdata which holds the user's
information (saves looking it up in the database all the time)

•	 Send the browser to wherever the redirect link pointed it, or to the root of the
site if none is provided, or if the provided one is invalid

•	 If anything goes wrong, still send the browser on to the redirect page, but
also give an error message as an added parameter

www.eBookTM.Com

User Management

[48]

Some of the code for the login will also be needed for other aspects of logins, such
as logouts and forgotten passwords, so we'll start this by creating /ww.incs/login-
libs.php:

<?php

require 'basics.php';

$url='/';

$err=0;

function login_redirect($url,$msg='success'){

 if($msg)$url.='?login_msg='.$msg;

 header('Location: '.$url);

 echo 'redirect';

 exit;

}

// set up the redirect

if(isset($_REQUEST['redirect'])){

 $url=preg_replace('/[\?\&].*/','',$_REQUEST['redirect']);

 if($url=='')$url='/';

}

All of the login functions will require a redirect after the action, so this creates a
function for handling the redirect, and does some simple validation on the requested
redirect_url, such as removing any query string parameters.

If the parameters were not removed, it is possible an admin on your CMS might be
fooled into going to a link such as http://cms/ww.admin/?delete-all-pages,
and after the login, they might be redirected back to that (fake, just an example) URL
which would then proceed and delete all pages.

So, we neutralize this problem by removing anything past a ? or &.

Create a ile, /ww.incs/login.php, containing the following code:

<?php

require 'login-libs.php';

login_check_is_email_provided();

// check that the password is provided

if(!isset($_REQUEST['password']) || $_REQUEST['password']==''){

 login_redirect($url,'nopassword');

}

login_check_is_captcha_provided();

login_check_is_captcha_valid();

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

Chapter 2

[49]

// check that the email/password combination matches a row in the user
table

$password=md5($_REQUEST['email'].'|'.$_REQUEST['password']);

$r=dbRow('select * from user_accounts where

 email="'.addslashes($_REQUEST['email']).'" and

 password="'.$password.'" and active'

);

if($r==false){

 login_redirect($url,'loginfailed');

}

// success! set the session variable, then redirect

$_SESSION['userdata']=$r;

$groups=json_decode($r['groups']);

$_SESSION['userdata']['groups']=array();

foreach($groups as $g)$_SESSION['userdata']['groups'][$g]=true;

if($r['extras']=='')$r['extras']='[]';

$_SESSION['userdata']['extras']=json_decode($r['extras']);

login_redirect($url);

This checks all inputs, sets a session variable if the login is valid, and in all cases
does a redirect to send the browser where it was going. The $_REQUEST super-global
variable is generated by merging the $_POST and $_GET variables.

There are a number of functions referenced in there that are not deined. We deine
those in /ww.incs/login-libs.php so they can be reused by the other login scripts
(add the functions to the end of the ile):

// check that the email address is provided and valid

function login_check_is_email_provided(){

 if(

 !isset($_REQUEST['email']) || $_REQUEST['email']==''

 || !filter_var($_REQUEST['email'], FILTER_VALIDATE_EMAIL)

){

 login_redirect($GLOBALS['url'],'noemail');

 }

}

// check that the captcha is provided

function login_check_is_captcha_provided(){

 if(

 !isset($_REQUEST["recaptcha_challenge_field"]) || $_
REQUEST["recaptcha_challenge_field"]==''

 || !isset($_REQUEST["recaptcha_response_field"]) || $_
REQUEST["recaptcha_response_field"]==''

){

www.eBookTM.Com

User Management

[50]

 login_redirect($GLOBALS['url'],'nocaptcha');

 }

}

// check that the captcha is valid

function login_check_is_captcha_valid(){

 require 'recaptcha.php';

 $resp=recaptcha_check_answer(

 RECAPTCHA_PRIVATE,

 $_SERVER["REMOTE_ADDR"],

 $_REQUEST["recaptcha_challenge_field"],

 $_REQUEST["recaptcha_response_field"]

);

 if(!$resp->is_valid){

 login_redirect($GLOBALS['url'],'invalidcaptcha');

 }

}

You'll also have noticed that the login_redirect() function has two parameters;
the irst is the URL to redirect to, and the second is a text code which designates a
message to be shown.

Now let's make use of that message code.

First create a ile /ww.incs/login-codes.php:

<?php

$login_msg_codes=array(

 'success'=>'login successful.',

 'noemail'=>'no email address provided, or the email'

 .' address was invalid.',

 'nopassword'=>'no password provided.',

 'nocaptcha'=>'no captcha provided.',

 'invalidcaptcha'=>'captcha invalid.',

 'loginfailed'=>'login incorrect. if you\'ve forgotten'

 .' your password, please use the Forgotten Password form.',

 'permissiondenied'=>'your user account does not have'

 .' permission for this area.'

);

These correspond to the $msg codes in the login script.

I've added two, for those cases where a person has logged in as a normal user but
doesn't have access permission for the admin area (or another area where the user
doesn't have the required role).

www.eBookTM.Com

Chapter 2

[51]

Let's use the codes. Edit the /ww.admin/login/login.php ile and add the following
highlighted lines:

 <div id="header"></div>

<?php

if(isset($_REQUEST['login_msg'])){

 require SCRIPTBASE.'ww.incs/login-codes.php';

 $login_msg=(int)$_REQUEST['login_msg'];

 if(isset($login_msg_codes[$login_msg])){

 echo '<script>$(function(){$("'

 .htmlspecialchars($login_msg_codes[$login_msg])

 .'").dialog({modal:true});});</script>';

 }

}

?>

 <div class="tabs">

We irst check that a valid message code was sent, then display it as a modal dialog
using jQuery UI's .dialog plugin.

A visitor could simply change the URL's login_msg value to make the various
messages appear, but it would be pointless of them to do that as it would not affect
their user status.

www.eBookTM.Com

User Management

[52]

You can change the dialog content so it has some prettier HTML if you wish.

Now, what if a user is logged in, but doesn't have admin rights?

We'll start testing this one by adding a user to the database with no groups:

mysql> insert into user_accounts

 (email,password,active,groups)

 values('user@verens.com',

 md5('user@verens.com|userpass'),1,'[]');

Query OK, 1 row affected (0.03 sec)

Now, we will change the /ww.admin/admin_libs.php ile—remember that it has a
function in it called is_admin(). Change that function to this:

function is_admin(){

 if(!isset($_SESSION['userdata']))return false;

 if(

 isset($_SESSION['userdata']['groups']['_administrators']) ||

 isset(

 $_SESSION['userdata']['groups']['_superadministrators'])

)return true;

 if(!isset($_REQUEST['login_msg'])) $_REQUEST['login_
msg']='permissiondenied';

 return false;

}

So in this case, we know that the user is logged in, and doesn't have admin rights, so
we set the $_REQUEST['login_msg'] to 'permissiondenied' if there is not already
another message set.

We avoid overwriting an existing message because that existing message has
priority. For example, a logged-in user trying to log in as an admin user would not
ind the "permission denied" message very useful when the actual problem is that
they got the password wrong.

www.eBookTM.Com

Chapter 2

[53]

Okay—so now do the login and use your proper admin details, illing in the captcha
correctly.

As bland as that appears, this little message means you've successfully written a
login script, which veriies your e-mail and password, with a captcha, and veriies
that you are either an administrator or superadministrator.

We are now in the admin area properly!

So, what do we need next? We have not written the forgotten password reminder,
and we also need to provide a method of logging out.

Let's do the logout irst.

Logging out
Logging out is much simpler than logging in. All we need to do is to remove the
userdata session variable that we created when logging in.

First off, let's edit /ww.admin/index.php to add in some design, and the start of the
admin menu, including the logout link:

<?php

require 'header.php';

echo 'you are logged in!';

require 'footer.php';

The footer will simply close off the HTML of the design, so here's /ww.admin/
footer.php:

 </div>

 </body>

</html>

www.eBookTM.Com

User Management

[54]

And here's the header—/ww.admin/header.php:

<?php

header('Content-type: text/html; Charset=utf-8');

require 'admin_libs.php';

?>

<html>

 <head>

 <script src="http://ajax.googleapis.com/ajax/

 libs/jquery/1.4.2/jquery.min.js"></script>

 <script src="http://ajax.googleapis.com/ajax/

 libs/jqueryui/1.8.0/jquery-ui.min.js"></script>

 <link rel="stylesheet" href="/ww.admin/theme/admin.css"

 type="text/css" />

 <link rel="stylesheet" href="http://ajax.googleapis.com/

 ajax/libs/jqueryui/1.8.0/themes/south-street/

 jquery-ui.css" type="text/css" />

 </head>

 <body>

 <div id="header">

 <div id="menu-top">

 Log Out

 </div>

 </div>

 <div id="wrapper">

We will be using jQuery and jQuery UI in all parts of the admin area, so they are
included by default.

Again, I've linked to a CSS ile which I won't go through in this book. You can
download it with the rest of the iles from Packt.

www.eBookTM.Com

Chapter 2

[55]

Here's the admin index page now with the design and Log Out link included:

Now, let's create /ww.incs/logout.php:

<?php

$url='/';

session_start();

// set up the redirect

if(isset($_REQUEST['redirect'])){

 $url=preg_replace('/[\?\&].*/','',$_REQUEST['redirect']);

 if($url=='')$url='/';

}

unset($_SESSION['userdata']);

header('Location: '.$url);

echo 'redirect';

In this case, it's not necessary to include any libraries (the /ww.incs/basics.php ile,
for example). All we need to do is unset $_SESSION['userdata'] and redirect the
browser. And so, we don't need to include login-libs.php.

Now, let's work on the forgotten password section.

Forgotten passwords
There are many ways that CMSs handle missing passwords. In some cases, a new
password is sent out through e-mail, in some cases, a security question lets the site
verify that the user is who he or she claims to be, and in some cases, a validation
e-mail is sent to verify the requester is the owner of the e-mail address.

www.eBookTM.Com

User Management

[56]

In this section, I'll mention a few security concerns. I must add that in most cases, it is
very unlikely that they will ever happen. But, as a developer of software, you should
be aware of those things that can go wrong and do your best to make sure they don't
happen in the irst place.

If you give the option of resetting the password when a user ills in their e-mail
address in the forgotten password form, there are some problems to beware of:

1. You may have just allowed an anonymous person to invalidate someone's
account just because they knew the e-mail address of the valid user. If this
is done repeatedly, it can really annoy that user, who may have to use a
different password every time they log in.

2. E-mail is insecure. Because it is sent through plain text in most cases (yes,
PGP e-mail is possible, but it is rarely used by normal users), you are sending
passwords that can be potentially read by the e-mail hosters, or anyone that
"taps the line".

If you give the option of changing a password by verifying the identity of the user
using a "security question", there are also some problems. Some sites make the user
pick from a set list of questions, none of which are secure:

1. It is easy to igure out someone's mother's maiden name. There are many
genealogy websites online where that information is readily available.

2. Asking who the user's irst teacher was is silly. Personally, I barely remember
who I met two years ago; let alone 30 years ago!

3. Asking the name of the user's pet assumes that there is a pet in the irst place,
and that there is only one pet (I have three cats at the moment). Also, all of
your friends probably know that pet's name. My cats are Buffy, Thurston,
and Tweedo.

4. Car's license number. Again, there is an assumption. I don't drive, and have
never owned a car.

Allowing the user to pick a security question is also silly. In most cases, the question
will be obvious. As an example, I was chatting with a friend once about this very
problem, and demonstrated it by opening up his Hotmail account—as his security
question, he'd written something silly like "wibble", and I guessed correctly that if
his security question was as much rubbish as that, then his answer would also be
rubbish. I entered "wibble" again and was in.

There is possibly no real correct solution to the problem of verifying someone's
identity over the Internet, so it's best to choose the "least worst" of the methods.

www.eBookTM.Com

Chapter 2

[57]

I mentioned a third possibility—sending out a validation e-mail. E-mail is a very
personal form of identiication. It is rare these days that you will ind anyone online
that doesn't have one, and usually, they've had the same e-mail address for years on
end—people get attached to their e-mail addresses. The validation e-mail method
involves some simple steps:

1. In the validation e-mail method, the user has forgotten their password, and
goes to the forgotten password form and enters their e-mail address.

2. An e-mail is sent to the e-mail address with a link embedded in it. This link
has a validation code attached which is recorded in the database.

3. When the user clicks on the link, this veriies the person's identity and logs
the person into the site.

4. The veriication code is then removed from the database. This way the login
links only work one single time.

It's not even necessary that the user reset the password as long as they're happy
enough to generate a fresh validation link each time—on some sites I use very
infrequently, I tend to have "moved on" to a new password and keep forgetting the
password I used for those infrequent visits, so for those sites, I'm always using a
validation link to log in!

Anyway—enough musing. Let's create the ile /ww.incs/password-reminder.php:

<?php

require 'login-libs.php';

login_check_is_email_provided();

login_check_is_captcha_provided();

login_check_is_captcha_valid();

// check that the email matches a row in the user table

$r=dbRow('select email from user_accounts where

 email="'.addslashes($_REQUEST['email']).'" and active'

);

if($r==false){

 login_redirect($url,'nosuchemail');

}

// success! generate a validation email, then redirect

$validation_code=md5(time().'|'.$r['email']);

$email_domain=preg_replace('/^www\./','',$_SERVER['HTTP_HOST']);

dbQuery('update user_accounts set activation_key="'.$validation_
code.'"

 where email="'.addslashes($r['email']).'"');

www.eBookTM.Com

User Management

[58]

$validation_url='http://'.$_SERVER['HTTP_HOST'].'/ww.incs/forgotten-
password-validate.php?verification_code='.$validation_code.'&email='.$
r['email'].'&redirect_url='.$url;

mail(

 $r['email'],

 "[$email_domain] forgotten password",

 "Hello!\n\nThe forgotten password form at http://".$_SERVER['HTTP_
HOST']."/ was submitted. If you did not do this, you can safely
discard this email.\n\nTo log into your account, please use the link
below, and then reset your password.\n\n$validation_url",

 "From: no-reply@$email_domain\nReply-to: no-reply@$email_domain"

);

login_redirect($url,'validationsent');

This script is very similar to the login script, but all references to the password ield
in the database and $_REQUEST have been removed, and we add in the validation
link generator.

Notice that we have added two message codes. Amend /ww.incs/login-codes.php
and add them:

 'permissiondenied'=>'your user account does not have'

 .' permission for this area.',

 'nosuchemail'=>'that email address does not exist in the'

 .' user accounts database',

 'validationsent'=>'a validation message has been sent to'

 .' your email address. please check your email.'

);

The e-mail's content, when it arrives, will look something like this:

Hello!

The forgotten password form at http://cms/ was submitted. If you did
not do this, you can safely discard this email.

To log into your account, please use the link below, and then reset
your password.

http://cms/ww.incs/forgotten-password-verification.php?verification_co
de=97e5daf0d6b96c1945ed450d29c63a42&email=kae@verens.com &redirect_
url=/ww.admin/index.php

You should feel free to amend the validation code generator to write whatever
message you want into it.

www.eBookTM.Com

Chapter 2

[59]

Now, we need to write the validation script, /ww.incs/forgotten-password-
verification.php:

<?php

require 'login-libs.php';

login_check_is_email_provided();

// check that a verification code was provided

if(!isset($_REQUEST['verification_code'])

 || $_REQUEST['verification_code']==''

){

 login_redirect($url,'novalidation');

}

// check that the email/verification code combination matches a row in
the user table

$password=md5($_REQUEST['email'].'|'.$_REQUEST['password']);

$r=dbRow('select * from user_accounts where

 email="'.addslashes($_REQUEST['email']).'" and

 verification_code="'.$_REQUEST['verification_code'].'" and active'

);

if($r==false){

 login_redirect($url,'validationfailed');

}

// success! set the session variable, clear the code from the

// db, then redirect

dbQuery('update user_accounts set verification_code="" where

 email="'.addslashes($_REQUEST['email']).'"');

$_SESSION['userdata']=$r;

$groups=json_decode($r['groups']);

$_SESSION['userdata']['groups']=array();

foreach($groups as $g)$_SESSION['userdata']['groups'][$g]=true;

if($r['extras']=='')$r['extras']='[]';

$_SESSION['userdata']['extras']=json_decode($r['extras']);

login_redirect($url,'verified');

In this one, we verify the e-mail address and validation code, and if they both
are correct, then we do a login, and send a message reminding the user to reset
their password.

www.eBookTM.Com

User Management

[60]

Add these new message codes to /ww.incs/login-codes.php:

 'validationsent'=>'a validation message has been sent to your email
address. please check your email.',

 'novalidation'=>'no validation code provided.',

 'validationfailed'=>'that email and validation code combination does
not exist. maybe it has already been used. please use the Forgotten
Password to resend the validation email.',

 'verified'=>'you have verified your email address and we have logged
you in. please remember to reset your password.'

);

And that is our login system completed.

In the next section, we will create a user management area in the admin area.

User management
Okay! We now have the admin area login working, so let's build the irst admin
page. This will be the user management page, which allows us to create, delete, and
edit users.

So irst, we need to edit the /ww.admin/header.php to add in a link to the user
management page. In the next chapter, we will rewrite the menu to make it easier to
add items to it. For now, the links will be hardcoded as top-level menu items.

Change the menu list to this:

 Users

 Log Out

Next, we will create /ww.admin/users.php:

<?php

require 'header.php';

echo '<h1>User Management</h1>';

echo '<div class="left-menu">';

echo 'Users';

echo '</div>';

echo '<div class="has-left-menu">';

echo '<h2>User Management</h2>';

if(isset($_REQUEST['action']))require 'users/actions.php';

if(isset($_REQUEST['id']))require 'users/form.php';

www.eBookTM.Com

Chapter 2

[61]

require 'users/list.php';

echo '</div>';

echo '<script src="/ww.admin/users/users.js"></script>';

require 'footer.php';

Because management involves multiple separate functions—displaying lists of items
and details of speciic items, editing items, deleting and creating, if you do all this in
one single ile, the ile gets huge and unmanageable.

Similarly, if you separate all these functions into separate iles and keep all those iles
in one directory, it makes it dificult for a developer to ind the right ile to edit (see
the root directory of a Mantis BT 1.2.0rc2 installation for an example: 219 iles!).

To make it easier to igure out what's going on, I like to place grouped iles into
their own directories. Hence the login iles are in /ww.admin/login/, the user
management iles are in /ww.admin/users/, and we'll see more examples as the
book goes on.

Anyway... when we click on the Users link in the menu, what we want to see is a list
of existing users.

Add this to /ww.incs/basics.php to give us a dbAll() function:

function dbAll($query,$key='') {

 $q = dbQuery($query);

 $results=array();

 while($r=$q->fetch(PDO::FETCH_ASSOC))$results[]=$r;

 if(!$key)return $results;

 $arr=array();

 foreach($results as $r)$arr[$r[$key]]=$r;

 return $arr;

}

What that does is, given an SQL query, it will build an array of results
and return that.

I haven't commented on it yet, but the db* functions we are writing here
use the PDO library to connect to the database.

One reason for using dbAll, dbQuery, and so on, instead of accessing the
database directly through PDO, mysql[i]_connect, or any other method, is
that it's easier to port the engine to another database or database library if
all DB methods are encapsulated in a small number of wrapper functions.

If given a second parameter (for example, 'id'), then the returned array will be
indexed using that parameter's value from each result row.

D
o
w

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k
 <

w
w

w
.w

o
w

e
b
o
o
k
.c

o
m

>

www.eBookTM.Com

User Management

[62]

We'll also need a function for returning a single value. Add this to the same ile:

function dbOne($query, $field='') {

 $r = dbRow($query);

 return $r[$field];

}

function dbLastInsertId() {

 return dbOne('select last_insert_id() as id','id');

}

Now that we have that, let's write /ww.incs/users/list.php:

<?php

$users=dbAll('select id,email,groups from user_accounts

 order by email');

echo '<table style="min-width:50%">

 <tr><th>User</th><th>Groups</th><th>Actions</th></tr>';

foreach($users as $user){

 echo '<tr><th><a href="users.php?id='.$user['id']

 .'">'.htmlspecialchars($user['email']).'</th>';

 echo '<td>'.join(', ',json_decode($user['groups'])).'</td>';

 echo '<td>edit';

 echo ' <a href="users.php?id='.$user['id']

 .'&action=delete" onclick="return confirm(\'are you

 sure you want to delete this user?\')">[x]</td></tr>';

}

echo '</table>';

echo '

 Create User';

That gives me the following result:

www.eBookTM.Com

Chapter 2

[63]

We can now see the existing users, as well as the groups that they belong to.

The code I wrote here generates and echoes HTML directly to the HTTP
stream. This is a "down and dirty" method of very quickly generating
some code and displaying it. A more appropriate method would be to use
a templating engine such as Smarty. Feel free to enhance the code after
we've looked at Smarty later in the book.

Before talking about editing and creating, we will look at the delete action.

Deleting a user
In the previous screenshot, you can see an [x] beside both users. The link is
intentionally small and obscure, because we really don't want to accidentally delete a
user by clicking the wrong link. So, we make the delete link more dificult to click.

We also add a JavaScript confirm() so that if an admin does click it, they are given
the chance to say "No, I did not intend to click this".

Now we can write the code to do the deletion.

Create the ile /ww.admin/users/actions.php:

 <?php

$id=(int)$_REQUEST['id'];

if($_REQUEST['action']=='delete'){

 dbQuery("delete from user_accounts where id=$id");

 unset($_REQUEST['id']);

}

www.eBookTM.Com

User Management

[64]

What happens with this is that the delete link is clicked, the user is deleted, then the
/ww.admin/users.php page displays the users list again.

Creating or editing a user
Creating and editing can both be done from the same form.

Basically, what happens is that you select to create or edit a user, which sends the
user's ID to the server.

The server then uses that ID to get the user's data from the database. If the data
doesn't exist, the result will obviously be blank.

The result is then used to ill in the user form.

When submitted, if the user ID is not valid, then the submission is used to create a
new user.

For this form, we will need to create the groups database table, and populate it
with _administrator and _superadministrator:

CREATE TABLE `groups` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `name` text,

 PRIMARY KEY (`id`)

) DEFAULT CHARSET=utf8;

insert into groups values(1,"_superadministrators");

insert into groups values(2,"_administrators");

And now, create /ww.admin/users/form.php:

<?php

$id=(int)$_REQUEST['id'];

$groups=array();

$r=dbRow("select * from user_accounts where id=$id");

if(!is_array($r) || !count($r)){

 $r=array('id'=>-1,'email'=>'','active'=>0);

}

echo '<form action="users.php?id='.$id.'" method="post">'

 .'<input type="hidden" name="id" value="'.$id.'" /><table>'

 .'<tr><th>Email</th>

 <td><input name="email" value="'.htmlspecialchars($r['ema
il']).'" /></td>

 </tr>'

 .'<tr><th>Password</th>

 <td><input name="password" type="password" /></td>

www.eBookTM.Com

Chapter 2

[65]

 </tr>'

 .'<tr><th>(repeat)</th>

 <td><input name="password2" type="password" /></td>

 </tr>'

 .'<tr><th>Groups</th><td class="groups">';

$grs=dbAll('select id,name from groups');

$gms=array();

foreach($grs as $g){ $groups[$g['id']]=$g['name'];

}

$grs=json_decode($r['groups']);

foreach($groups as $k=>$g){

 echo '<input type="checkbox" name="groups['.$k.']"';

 if(in_array($g,$grs))echo ' checked="checked"';

 echo ' />',htmlspecialchars($g),'
';

}

echo '</td></tr>';

// }

echo '<tr><th>Active</th><td><select name="active">

 <option value="0">No</option>

 <option value="1"'.($r['active']?'

 selected="selected"':'').'>Yes</option></select></td></tr>';

echo '</table>';

echo '<input type="submit" name="action" value="Save" />';

echo '</form>';

www.eBookTM.Com

User Management

[66]

After clicking on the kae@verens.com link, we get this form:

Next, we just need to save the updated data.

We can do this by adding this code to the end of the /ww.admin/users/actions.
php ile:

if($_REQUEST['action']=='Save'){

 $groups=$_REQUEST['groups'];

 if(!count($groups))$groups=array(0);

 $grs=dbAll('select name from groups where id in ('

 .addslashes(join(',',array_keys($groups)))

 .') order by name');

 $groups=array();

 foreach($grs as $r)$groups[]=$r['name'];

 $sql='set email="'.addslashes($_REQUEST['email']).'",

 active="'.(int)$_REQUEST['active'].'",

 groups="'.addslashes(json_encode($groups)).'"';

 if(

www.eBookTM.Com

Chapter 2

[67]

 isset($_REQUEST['password']) &&

 $_REQUEST['password']!=''

){

 if($_REQUEST['password']!==$_REQUEST['password2'])

 echo 'Password not updated. Must be entered

 the same twice.';

 else $sql.=',password=md5("'.addslashes(

 $_REQUEST['email'].'|'.$_REQUEST['password']

).'")';

 }

 if($id==-1){

 dbQuery('insert into user_accounts '.$sql);

 $_REQUEST['id']=dbLastInsertId();

 }

 else{

 dbQuery('update user_accounts '.$sql.' where id='.$id);

 }

 echo 'users updated';

}

That script will handle both the creation and editing of users.

We will discuss the creation and editing of groups later in the book.

Summary
In this chapter, we created the login system, including captcha management
and forgotten password management.

We also created a user management system for creating and editing users.

In the next chapter, we will start building the page management system.

www.eBookTM.Com

